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Coding and computing: Neuromorphic e lec t ronics

The most impressive electronics you possess aren’t 
in your pocket. They’re in your head. Not only does 
your brain keep you breathing, moving, speaking 
and thinking enough to read a magazine about phys-
ics, but it does it all on the cheap. The brain runs on 
about 20 watts – less than a light bulb and far less 
than the megawatts used by supercomputing cen-
tres. And yet on this power the brain is able to do 
things that supercomputers still struggle with, such 
as advanced pattern recognition.

For decades, scientists have tried to develop “brain-
like” code for conventional computers, aiming to 
emulate the unique talents of the brain. (Imagine 
what could be achieved by combining the computa-
tional power of supercomputers with our own cog-
nitive abilities.) Researchers have, however, found 
this a very challenging quest, since the architecture 
of conventional computing hardware is so different 
from that of the brain. Instead, a community of sci-
entists and engineers is now developing a new kind of 
computing hardware architecture that is physically, 

and functionally, more analogous to the computers 
inside our heads.

Our brain has a plethora of electrically active 
cells, called neurons, each of which has a profusion 
of connections, called synapses, to other neurons. 
With time and experience, the synapses in the brain 
strengthen and weaken to allow the flow of more or 
fewer current pulses, which changes the strength, 
or “synaptic weight”, of connections. Additionally, 
neurons can be discarded or grown anew, and these 
structural changes lead to learning and memory. This 
ability of the brain to adapt and rewire itself, known 
as its “plasticity”, is why it can learn new tasks with-
out needing an external programmer. Sensibly, the 
brain has evolved computational strengths that are 
adapted not so much to abstract computation, but to 
real-world problems, like not getting eaten by a tiger.

Supercomputers, in contrast, run on switches and 
logic gates, and can far outperform the brain on 
computational power alone. This powerful mathe-
matical approach is implemented using semiconduc-

Smarter machines
Although today’s computers can perform superhuman feats, even the best are no match for human 
brains at tasks like processing speech. But as Jessamyn Fairfield explains, a new generation of 
computational devices is being developed to mimic the networks of neurons inside our heads
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tors, which have not only enabled huge advances in 
computing, but also made it widely affordable. While 
the brain can rewire its own hardware, this feature 
is neither replicated nor missed in the main silicon 
computer-chip industry. The 1980s did see the inven-
tion of a hardware component that could be repro-
grammed “in the field”, but the “field-programmable 
gate array” did not prove popular except in niche 
applications and lacked the full flexibility of neurons 
and synapses.

Although the raw computational power of super-
computers cannot be matched, Moore’s law, in which 
the number of transistors on a chip doubles every two 
years, is slowly eroding. We are perhaps close to the 
end of gains to be eked from traditional silicon archi-
tectures, as we approach the limit of heat dissipation 
in ever more miniaturized circuits. Another restric-
tion of this technology is that the circuits for compu-
tation and memory are kept separate, requiring large 
throughput to move information from computation 
to memory and back again. This “von Neumann” 
bottleneck is avoided in the brain because memory 
is largely stored in the shape of the network, and in 
the way in which neurons are connected to which 
others, rather than as a series of bits that have to be 
shuttled around.

Many impressive forays into simulating the human 
brain have nevertheless managed to do so using con-
ventional computer hardware. “Deep learning”, for 
example, is effectively a software approach incorpo-
rating the brain’s patterns of connectivity to tackle 
applications like computer vision, speech recogni-
tion and language processing. Deep-learning algo-
rithms often comprise multiple layers of artificial 
neural networks – sets of software nodes each of 
which feeds into the next – that can either perform 
“supervised” learning, involving human guidance, 
or “unsupervised” learning. Such computational 
approaches are key to the Human Brain Project, 
a €1bn European Union initiative to simulate the 
brain. Deep learning seems to be a promising step 
towards achieving this goal.

However, trying to implement software for neural 
behaviour onto traditionally structured electronics 
is like playing a symphony on only timpanis. How 

much more could we do if we had electronics that 
mimicked the timbre and shape of the brain? 

Neuromorphic engineering
While the quest to understand how we think, and 
hence how the brain works, is nearly as old as sci-
ence, only recently have we developed electronics 
anywhere near capable of reproducing its circuitry. 
Early computational devices were based on the 
binary logic of the transistor, first implemented with 
vacuum tubes and later in silicon, where bits of infor-
mation can have values of only 1 or 0. Binary logic is 
based on algebra first proposed by George Boole in 
the mid-1800s, an English mathematician working in 
Cork, Ireland. But in the 1960s Lotfi Zadeh at the 
University of California, Berkeley, proposed an ana-
logue algebraic system, where a range of less crisply 
defined values are the basis for logic operations. This 
“fuzzy logic” is much closer to the changeable synap-
tic weights of the brain.

One of the first pioneers who saw the relevance 
of fuzzy logic to biological electronic systems was 
engineer Carver Mead at the California Institute 
of Technology, US, who in the 1980s coined the 
word “neuromorphic” to describe electronic devices 
modelled on human biology. He went on to create 
computer interfaces for touch, hearing and vision. 
While Mead and other early researchers in neuro-
morphic engineering found niche applications for 
their devices, ultimately they were limited because 
most widely available electronics were still based on 
digital logic using silicon, and the primary industrial 
goal was to make these silicon transistors as small 
and reliable as possible.

Decades later, a breakthrough result enabled a 
renaissance in neuromorphic engineering. In 2008 
neuromorphic engineers learned of a new circuit 
element for their arsenal, when a team led by Stan-
ley Williams at Hewlett Packard reported the first 
experimental realization of a memristor (Nature 453 
80). This device had first been predicted by Leon 
Chua in 1971 as a theoretical necessity to complete 
the set of basic circuit elements: resistor, capacitor 
and inductor. The memristor in its ideal form is a cir-
cuit element whose resistance depends on how much 
current has previously flowed through it, meaning it 
can be used as an analogue form of computer mem-
ory that is much closer to the plasticity of synapses 
in the brain.

Hewlett Packard’s implementation of the memris-
tor consisted of a nanoscale film of titanium diox-
ide, containing positively charged oxygen vacancies, 
sandwiched between two electrodes. When a cur-
rent is passed through the film, the oxygen vacancies 
move one way or the other across the film, depending 
on the sign of the current. This repositioning of the 
oxygen vacancies changes the resistance across the 
film, leading to the device memory.

While the ideal memristor is a passive device, 
requiring no power to operate, the experimental 
realizations of memristors have generally involved 
some sort of energy storage and release. Since this is 
required in atomic reordering or chemical reactions 
at the nanoscale, many researchers say that pure and 

Nanowire networks 
Films of 
nanomaterials can 
be used to create 
adaptable 
electronics that 
mimic the brain, and 
the connectivity 
paths through these 
materials can be 
imaged using 
scanning electron 
microscopy. When 
the metal electrode 
(bottom) is 
connected to 
electrical ground, 
nanowires with a 
conducting path to 
the electrode and 
the electrode itself 
appear dark due to 
electrons flowing 
out. In contrast, 
nanowires isolated 
from the electrode 
experience a 
build-up of 
electrons, causing 
them to appear light 
as more electrons 
are reflected into the 
detector. The scale 
bar represents 
10 µm.
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hence passive memristors are only theoretically pos-
sible, though they do say that “memristive systems” 
like the titanium dioxide film can be implemented as 
useful circuit elements.

As many researchers realized once the first results 
were announced, memory of past measurements is 
a common nanoscale feature. What had previously 
been seen as a flaw in the electronic behaviour of 
many nanomaterials could now become a strength. 
Current flow can often cause small changes in mate-
rials, by moving atoms or even just by changing the 
electron distribution in the material between mobile 
states and trapped states. These changes may not be 
noticeable in the properties of a bulk material, but 
when the material is thin or has a small feature size, 
the changes can affect material properties in a meas-
urable way. This robust memristance in nanomateri-
als has thus led to many neuromorphic devices based 
on nanoscale phenomena and interactions.

Materials for brain-like electronics
The development of memristive devices initially 
continued in the vein of the thin-film-based Hewlett 
Packard device, but a variety of other designs soon 
followed. A phenomenon called resistive switching 
drives one increasingly popular type of memristor, 
most notably thanks to work led by Rainer Waser at 
RWTH Aachen University, Germany, and Wei Lu 
at the University of Michigan, US. In this device, a 
conductive filament across a non-conducting oxide 
can be formed and then strengthened or broken by 
electrical impulses, allowing patterns of conductivity 
to be defined and used for either memory or compu-
tation. It’s challenging to control the exact filament 
location and structure, as with many processes at the 
nanoscale, but these resistive switches are self-heal-
ing and responsive to electrical stimuli. The filaments 
themselves parallel synaptic connections between 
neurons, whose synaptic weight can be tuned by 
repeated stimuli. And since filamentary conduction 
has been found in a wide range of metal oxides at the 

nanoscale, the exact structure of the device can be 
tuned for the environment and application.

Another approach to memristors is to combine 
nanomaterials with polymers, either by coating the 
nanomaterials with a polymer or by mixing the two. 
As shown by researchers led by Dominique Vuil-
laume at the University of Lille, France, polymers in 
conjunction with conducting nanoparticle or nanow-
ire cores can change their resistance, which is a key 
feature of memristive devices. Some conducting 
polymers can also be doped and de-doped, enabling 
them to act as standalone neuromorphic components 
when submerged in an electrolyte. Such polymer-
based memristors are of special interest for brain–
computer interfaces because polymers are both 
mechanically and electrically closer to the brain, 
and have more parallel channels for conduction than 
inorganic electronics. Recent research led by George 
Malliaras at the École des Mines de Saint-Étienne, 
France, used derivatives of poly(3,4-ethylenedioxy-
thiophene) (PEDOT) in electrolyte-controlled tran-
sistors. These devices have shown both plasticity and 
another feature of synapses called timing depend-
ence, in which the memristive function depends on 
how closely spaced together in time the electrical 
pulses arrive.

These building blocks of neurons and synapses, 
both the polymer and solid-state implementations, 
can then be combined into networks that exhibit 
memory, as shown by researchers led by John Boland 
at Trinity College Dublin, Ireland. These networks 
can not only reproduce tunable synaptic weights, 
but they can also show the same timing dependence 
as actual synapses do. My own published work with 
both the Boland and Malliaras labs investigated 
neuromorphic behaviour in individual nanowires, 
nanowire networks and polymer electronics, show-
ing that brain-like function can be created in a very 
broad array of materials and device types. Piece by 
piece, researchers are reproducing the key compo-
nents of synaptic plasticity in the brain.

Even the US government has taken an inter-
est in neuromorphic computing, funding the SyN-
APSE initiative through the US Defense Advanced 
Research Projects Agency to the tune of more than 
$100m. IBM and HRL Laboratories in the US have 
been the main beneficiaries, with their researchers 
working to make artificial neurons and synapses in 
silicon that are compatible with industrial fabrica-
tion processes. In 2014 IBM released its TrueNorth 
chip, which simulates a million neurons and 256 
million programmable synapses, while consuming 
only one ten-thousandth of the energy of a compa-
rable traditional microchip. Computationally, the 

Mimicking the brain IBM TrueNorth computer chips are based on 
simulated neurons and synapses.
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value of memristive networks is already being shown 
for conventional tasks such as prime factorization, 
and novel neuromorphic computing paradigms are 
also emerging.

The path forward
While this is all exciting research, many important 
unanswered questions still lie beneath the surface. 
Which brain features are actually necessary for 
computing, memory or – dare we ask – conscious-
ness? Which parts of the connectivity of the brain 
are critical, and which are remnants of our evolu-
tion that we no longer need? Does the brain run on 
electrical pulses merely out of biological necessity, or 
for computational reasons we have yet to realize and 
exploit? And even if we can reproduce the behaviour 
of synaptic spikes in artificial neuromorphic devices, 
will we gain anything from it without a way to crack 
the neural code that determines how these spikes are 
translated into movement, feeling or memory?

To find a path forward, neuromorphic engi-
neers must talk to neuroscientists who have long 
approached these questions from the other side, 
examining fully formed and functioning brains and 
attempting to tease out the principles underneath. 
Those looking to build a brain from the ground up 
would be foolish not to seek out this knowledge. The 
amazing work coming out of the Human Connec-
tome Project in the US, for example, has shed new 
light on how different regions of the brain are inter-
connected, light which could illuminate a new path 
for neuromorphic device connectivity. Only then can 
the scientific community get closer to the tantaliz-
ing dual prizes, of computers that can truly grow and 
learn, and a better understanding of the computers 
at work inside our very own heads.

Graphic navigation The Human Connectome Project aims to provide an 
unparalleled compilation of neural data, such as this high-angular resolution 
diffusion image of the axial view of a brain. The tensor can be visualized as an 
ellipsoid in 3D space, showing fluid mappings and brain connectivity.
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